代號:34070 34170

108年特種考試地方政府公務人員考試試題

頁次:3-1

等 別:三等考試

類 科:電力工程、電子工程

科 目:工程數學 考試時間:2小時

座號:____

※注意:禁止使用電子計算器。

甲、申論題部分: (50分)

- (一)不必抄題,作答時請將試題題號及答案依照順序寫在申論試卷上,於本試題上作答者,不予計分。
- (二)請以藍、黑色鋼筆或原子筆在申論試卷上作答。
- (三)本科目除專門名詞或數理公式外,應使用本國文字作答。
- 一、求通解 (general solution) 為 $c_1e^x + c_2xe^x + x^2e^x$ 的二次微分方程式,其中 c_1 及 c_2 為任意常數。 (10 分)

二、求週期為
$$2T$$
 的函數, $f(x) = \begin{cases} \cos(\pi x/T), & 0 \le x < T \\ 0, & T \le x < 2T \end{cases}$,且 $f(x+2T) = f(x)$

拉普拉斯轉換(Laplace transform)。(15分)

$$三$$
、若 $\cos(3+i2)=a+ib$,求 a 及 b 。(5分)

四、求
$$\oint_{\gamma} \frac{z}{(z+2)(z-4i)} dz$$
,其中 γ 為 $|z|=5$ 的圓。(10 分)

五、
$$A = \begin{bmatrix} -1 & -2 \\ 1 & 4 \\ 2 & 2 \end{bmatrix}$$
 及 $B = \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix}$,求 x ,使得 $||Ax - B||$ 最小(least square

solution)。(10分)

乙、測驗題部分: (50分)

代號:7340

- (一)本測驗試題為單一選擇題,請選出一個正確或最適當的答案,複選作答者,該題不予計分。
- (二)共20 題,每題2.5 分,須用2B鉛筆在試卡上依題號清楚劃記,於本試題或申論試卷上作答者,不予計分。
- 1 令 u = i-j-k;v = -3i+4j+6k;w = -2i-4j+2k,則由 u,v 及 w 所形成的平行立方體(parallelepiped) 體積為何?

(A) 9

(B) $9\sqrt{2}$

(C) 18

(D) $18\sqrt{2}$

2
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -1 \\ -2 & -2 & 3 \end{bmatrix}$$
,試問 $\forall x \in \mathbb{R}^3$, $\frac{x^T A x}{x^T x}$ 之最大值為何?

$$(B)$$
 2

$$(C)$$
 3

$$(D)$$
 4

3 令矩陣
$$\mathbf{A} = \begin{bmatrix} 5 & 10 & -10 \\ 10 & 5 & -20 \\ 5 & -5 & -10 \end{bmatrix}$$
, $\mathbf{P} = \begin{bmatrix} a & b & 0 \\ 0 & 1 & 1 \\ 1 & 0 & c \end{bmatrix}$,且 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}$,其中 \mathbf{D} 為一 3×3 對角矩陣(diagonal

matrix),下列敘述何者正確?

(A)
$$a + b + c = 5$$

(B)
$$a \times b \times c = 4$$

$$(C) a - b - c = 0$$

(D)
$$\frac{a \times b}{c} = 1$$

已知 \mathbf{A} 為 $m \times n$ 矩陣目 $\operatorname{rank}(\mathbf{A}) = r$,下列敘述何者正確?

(A) **Ax=0** 的解空間(solution space)維度(dimension)為*m-r*

(B)若 m=n=r 且 x 為 $n\times1$ 未知矩陣,則 Ax=0 存在唯一解

(C)若 m=n=r,則 **A** 的列向量(row vector)彼此間都是線性相依(linear independent)

(D)若 m>n>r,則 **A** 的列向量(row vector)彼此間都是線性獨立(linear dependent)

5 求矩陣
$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
有幾個線性獨立之特徵向量?

$$(C)$$
 3

(D) 4

6
$$A = \begin{bmatrix} 0 & -2 \\ 1 & 3 \end{bmatrix}$$
, $\Leftrightarrow e^A = \begin{bmatrix} a_{ij} \end{bmatrix}_{2\times 2}$, $\bowtie a_{11} + a_{22} = ?$

(A)
$$e - e^2$$

(B)
$$e + e^2$$

$$(C) - e + e^2$$

(D)
$$2e - e^2$$

(A) $e - e^2$ (B) $e + e^2$ 7 下列何者為 $(-64)^{\frac{1}{4}}$ 的複數根?

(A)
$$-1 - i$$

(B)
$$-2 - i$$

$$(C) = 1 = 2$$

(D)
$$-2 - 2i$$

 $8 \quad \ln\left(1-i\sqrt{3}\right) = ?$

$$(A) 2 + i \left(-\frac{\pi}{3} + 2n\pi \right)$$
,其中 n 為任意整數

$$(A)$$
 $2+i\left(-\frac{\pi}{3}+2n\pi\right)$,其中 n 為任意整數 (B) $2+i\left(-\frac{\pi}{6}+2n\pi\right)$,其中 n 為任意整數

(C)
$$2+i\left(\frac{2\pi}{3}+2n\pi\right)$$
,其中 n 為任意整數

$$(C)$$
 $2+i\left(\frac{2\pi}{3}+2n\pi\right)$,其中 n 為任意整數 (D) $2+i\left(\frac{5\pi}{6}+2n\pi\right)$,其中 n 為任意整數

求 $\int_{\mathbb{R}} z^2 dz$,沿著路徑 $\varphi = t + it$, $0 \le t \le 2$ 積分之值:

(A)
$$\frac{32}{3}(i-1)$$
 (B) $\frac{16}{3}(i-1)$ (C) $\frac{8}{3}(i-1)$ (D) $\frac{4}{3}(i-1)$

(B)
$$\frac{16}{3}(i-1)$$

(C)
$$\frac{8}{3}(i-1)$$

(D)
$$\frac{4}{3}(i-1)$$

假設 $f(z) = \frac{1}{z}$, 求 $\oint_C f(z)dz$ 之值 , C 為 |z-2|=1 之逆時針之圓周。

$$(C) = 2\pi i$$

(D) $4\pi i$

假設 $k_1e^{ax} + k_2e^{bx} + e^{cx}$ 為微分方程式 $y'' - 6y' + 8y = 3e^x$ 的解,則 a + b + c 為何? 11

(A) - 6

(B)-4

(D) 9

