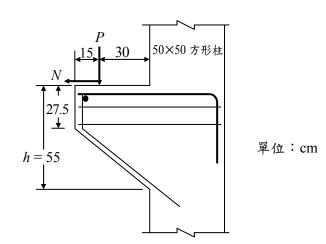
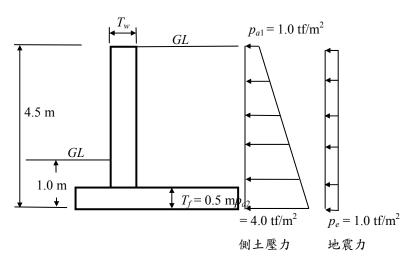
105年專門職業及技術人員高等考試建築師、 技師、第二次食品技師考試暨普通代號:00110 考試不動產經紀人、記帳士考試試題

等 别:高等考試

類 科:土木工程技師


科 目:結構設計(包括鋼筋混凝土設計與鋼結構設計)

※注意:(→)可以使用電子計算器。


(二)不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

三下列問題之相關公式、物理常數及設計參數未提及時,請依我國頒布之最新規範自行做合理推斷或假設。

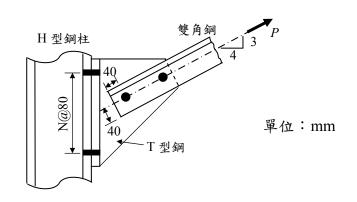
一、有一鋼筋混凝土托架如下圖所示,在工作載重下承受垂直靜載重 P_D = 20.0 tf,垂直活載重 P_L = 15.0 tf 及水平活載重 N_L = 3.0 tf,集中載重之中心距柱表面為 30 cm,柱為 50 cm × 50 cm 之方形柱。混凝土 f_c' = 210 kgf/cm²、鋼筋 f_y = 4200 kgf/cm²,鋼筋中心保護層厚 d' = 6.5 cm。試設計此托架所需之鋼筋。(混凝土為整體澆置 μ = 1.4,使用#8 主筋及#4 閉合締筋)(25 分)

二、有一懸臂式擋土牆,其完成後之地面線如下圖所示。牆後之主動側土壓力及地震作用下之側土壓力增量如圖所示(其值為未係數化土壓力值)。試設計此擋土牆垂直牆版所需之無剪力筋最小厚度(T_w)及所需配筋(包括所需溫度鋼筋,鋼筋中心保護層厚一律使用 $10~{\rm cm}$),並繪製此垂直牆版之配筋草圖。材料之 $f_c'=210~{\rm kgf/cm}^2$ 、 $f_v=2800~{\rm kgf/cm}^2$ 。(主筋使用#8 筋,溫度鋼筋使用#4 筋,牆厚為 $5~{\rm cm}$ 倍數)($25~{\rm cm}$))

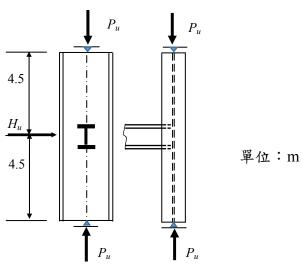
(請接第二頁)

105年專門職業及技術人員高等考試建築師、 技師、第二次食品技師考試暨普通代號:00110 考試不動產經紀人、記帳士考試試題

等 别:高等考試


類 科:土木工程技師

科 目:結構設計(包括鋼筋混凝土設計與鋼結構設計)


三、有一等邊雙角鋼($2L100\times100\times13$)張力斜拉桿如下圖所示。T型鋼與雙角鋼是以 4-D25 單排螺栓接合。T型鋼與柱翼鈑是以兩排螺栓固定在柱翼鈑上,所有螺栓皆為 D25 A325-N 高強度螺栓,螺栓孔中心間距為 $S=8\,\mathrm{cm}$,螺栓孔中心邊距皆為 $S/2=4\,\mathrm{cm}$ 。如果本接合所有螺栓孔皆為標準孔,T型鋼鋼鈑有足夠厚度不會控制設計,雙角鋼鋼料為SN400B,且係數化之設計作用力 $P_u=102\,\mathrm{tf}$,請依我國鋼構極限 設計規範求:

(一雙角鋼與T型鋼之接合是否符合規範之規定?(10分)

 \Box 在係數化設計作用力 $P_u = 102$ tf 作用下,T 型鋼與柱翼鈑接合處所需螺栓數為何? $(15 \, \mathcal{G})$

四、如下圖之 H 熱軋型鋼柱(H400×400×13×21)為有側撐構架中之主結構體,柱高 9 m 承受係數化之設計軸力 P_u = 200 tf。柱之兩端假設為鉸接,且在柱弱軸方向在柱 中間有水平梁支撐。假設鋼料為 SN400B,彎矩放大係數 B_1 = B_2 = 1.0。請依我國鋼 構極限設計規範,求在柱高 4.5 m 處,柱強軸方向可承受之最大係數化水平作用力 H_u 為何?(25 分)

(請接第三頁)

105年專門職業及技術人員高等考試建築師、 技師、第二次食品技師考試暨普通代號:00110 考試不動產經紀人、記帳士考試試題

等 别:高等考試

類 科:土木工程技師

科 目:結構設計(包括鋼筋混凝土設計與鋼結構設計)

鋼筋混凝土設計參考資料:

依規範主要載重組合如下:(1)U = 1.4D,(2)U = 1.2D+1.6L,(3)U = 1.2D+1.0L+1.6W,(4)U = 1.2D+1.0L+1.0E,(5)U = 0.9D+1.6W+1.6H,(6)U = 0.9D+1.0E+1.6H 鋼筋直徑及斷面積:(cm, cm²)

托架所需使用鋼筋之規定如下:

$$A_{vf} = \frac{V_u}{\phi f_v \mu}$$

需要之
$$A_s = \frac{2}{3}A_{vf} + A_n \ge A_f + A_n$$
; 需要之 $A_h = \frac{1}{2}(A_s - A_n)$

拉力筋最小鋼筋比 $\rho_{min} = 0.04 \frac{f'_c}{f_y}$; $\max V_n \le 0.2 f'_c b_w d \le 56 b_w d$ (kgf)

$$V_u > N_u \ge 0.20V_u$$
; $M_u = V_u \cdot a + N_u(h - d)$

$$V_c = 0.53 \sqrt{f_c'} b_0 d$$

$$V_c = 0.265(2 + \frac{4}{\beta_c})\sqrt{f_c'}b_0d \; \; ; \; \; V_c = 0.265(2 + \frac{\alpha_s d}{b_0})\sqrt{f_c'}b_0d \; \; ; \; \; V_c = 1.06\sqrt{f_c'}b_0d$$

$$\rho = \frac{1}{m} \left[1 - \sqrt{1 - \frac{2mR_n}{f_y}} \right] \; ; \; 牆溫度鋼筋 \; : \; A_{sh,min} = 0.0025 \, bh \; ; \; A_{sv,min} = 0.0015 \, bh$$

鋼結構設計參考資料:SN400B: F_y = 2.4 tf/cm² , F_u = 4.1 tf/cm² ; E = 2040 tf/cm² $L100\times100\times13$ 等邊單角鋼斷面性質: Ag = 24.31 cm² , d = 10 cm , t = 1.3 cm , r_x = r_y = 3.0 cm 。

 $H400\times400\times13\times21$ 型鋼斷面性質:d=40.0~cm, $b_f=40.0~cm$, $t_w=1.3~cm$, $t_f=2.1~cm$, $Ag=218.7~cm^2$, R=2.2~cm, $r_x=17.45~cm$, $r_y=10.42~cm$, $I_x=66600~cm^4$, $I_y=22400~cm^4$, $S_x=3330~cm^3$, $S_y=1120~cm^3$, $Z_x=3670~cm^3$, $Z_y=1700~cm^3$, $J=274.72~cm^4$, $C_w=8043896~cm^6$, $L_P=523~cm$, $L_r=1932~cm$

105年專門職業及技術人員高等考試建築師、

技師、第二次食品技師考試暨普通代號:00110

考試不動產經紀人、記帳士考試試題

全四頁 第四頁

等 别:高等考試

類 科:土木工程技師

科 目:結構設計(包括鋼筋混凝土設計與鋼結構設計)

ASTM 高強度螺栓之標稱直徑、斷面積及最小預力(tf)

直徑(mm)	16	19	22	25	29	32	35	38
斷面積 cm ²	1.98	2.85	3.88	5.07	6.41	7.92	9.58	11.4

承壓型螺栓之標稱強度(tf/cm²)如下:

A325-N: $F'_{nt} = 8.19 - 2.5 f_{uv} \le 6.3$; A325-X: $F'_{nt} = 8.19 - 2.0 f_{uv} \le 6.3$

螺栓之標稱強度

螺栓種類	標稱張力強度F _{nt} (tf/cm ²)	標稱剪力強度F _{nv} (tf/cm ²)		
A307	3.15	1.68		
A325 剪力面有螺紋者	6.30	3.36		
A325 剪力面無螺紋者	6.30	4.20		

螺栓孔承壓強度: $R_n = 1.5 L_c t F_u \le 3.0 dt F_u$

塊狀撕裂:

當
$$F_u A_{nt} \ge 0.6 F_u A_{nv}$$
 ; $P_n = 0.6 F_v A_{gv} + F_u A_{nt} \le 0.6 F_u A_{nv} + F_u A_{nt}$

當
$$F_u A_{nt} < 0.6 F_u A_{nv}$$
 ; $P_n = 0.6 F_u A_{nv} + F_y A_{gt} \le 0.6 F_u A_{nv} + F_u A_{nt}$

$$\frac{P_{u}}{\phi P_{n}} \ge 0.2 : \frac{P_{u}}{\phi P_{n}} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_{b} M_{nx}} + \frac{M_{uy}}{\phi_{b} M_{ny}} \right) \le 1.0$$

$$\frac{P_{u}}{\phi P_{n}} < 0.2 : \frac{P_{u}}{2\phi P_{n}} + (\frac{M_{ux}}{\phi_{b} M_{nx}} + \frac{M_{uy}}{\phi_{b} M_{ny}}) \le 1.0$$

$$F_{cr} = [\exp(-0.419 \lambda_c^2)]F_y ; \lambda_c = (\frac{KL}{r})\sqrt{\frac{F_y}{\pi^2 E}}$$

H 熱軋型鋼:
$$\lambda_p = \frac{b_f}{2t_f} = \frac{17}{\sqrt{F_y}}$$
 ; $\lambda_p = \frac{h}{t_w} = \frac{170}{\sqrt{F_y}}$; $\lambda_r = \frac{b_f}{2t_f} = \frac{37}{\sqrt{F_y - F_r}}$; $\lambda_r = \frac{h}{t_w} = \frac{260}{\sqrt{F_y}}$