104年公務人員升官等考試、104年關務人員升官等考試 代號:11430 全一張 104年交通事業公路、港務人員升資考試試題 (正面)

等級:簡任類科(別):統計

科 目:統計學研究

※注意:(一)可以使用電子計算器。

□不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

- 一、假設(X,Y)雨隨機變數之聯合機率密度函數(joint probability density function)為 $f_{X,Y}(x,y)=Cxy,0< x< y<1$,當x,y為其他值時, $f_{X,Y}(x,y)=0$ 。
 - (-)計算 C 值使得 $f_{X,Y}(x,y)$ 為一定義之聯合機率密度函數。(5分)
 - (二)試分別求出X與Y之邊際 (marginal)機率密度函數。(10分)
 - (三)試分別求出X給定Y之條件期望值(conditional expectation)及條件變異數:E(X|Y) 及Var(X|Y)。(10分)
- 二、假設 X_1, X_2, \dots, X_n 為一組來自 $f(x; \beta) = 1/\beta, 0 < x \le \beta$ 分配之隨機樣本,其中參數 β 未知,n 為樣本數。(每小題 10 分,共 20 分)
 - (-)試求參數 β 之動差估計式 (method-of-moments estimator)。
 - (二)試求參數 β 之最大概似估計式 (maximum-likelihood estimator)。
- 三、為了解兩政黨對加入跨太平洋夥伴協定(Trans-Pacific Partnership Agreement)的意向,分別由甲政黨及乙政黨中隨機抽取 120 人及 100 人加以調查,其中回答贊成的人數分別為 84 人及 48 人,如要檢定兩政黨贊成加入跨太平洋夥伴協定的比例是否相同時,試問:
 - (一)此檢定的 Z 檢定統計量計算出來的值為何? (答案請計算至小數點第二位) (10 分)
 - □又利用此 Z 檢定統計量之值計算出來的 P-值(P-value)為何?(10分)
 - (Ξ) 試問在顯著水準 $\alpha = 0.05$ 下,檢定兩政黨贊成加入跨太平洋夥伴協定的比例是否相同? $(5\,\%)$
- 四、某醫療研究部門認為癌症病患存活時間(Y)和病患幸福指數(X)有關,因此收集了30位病患的資料,得下列統計結果:

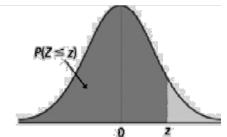
$$\sum_{i=1}^{30} x_i = 66, \quad \sum_{i=1}^{30} y_i = 60, \quad \sum_{i=1}^{30} x_i y_i = 246, \quad \sum_{i=1}^{30} x_i^2 = 168 \quad \text{fo} \quad \sum_{i=1}^{30} y_i^2 = 890 \quad \circ$$

試問如以上述資料建構一簡單線性迴歸模型 $Y = \beta_0 + \beta_1 X + \varepsilon$, ε 為隨機誤差項並滿足迴歸分析之基本假設,試問(所有答案請計算至小數點第二位):(每小題 10 分,共 30 分)

- (一)迴歸直線 $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$ 為何?
- (三)迴歸分析變異數分析表中之 F 檢定統計量的值為何?

(請接背面)

104年公務人員升官等考試、104年關務人員升官等考試 104年交通事業公路、港務人員升資考試試題 代號:11430


全一張(背面)

等級:簡任類科(別):統計

科 目:統計學研究

TABLE 1 (Continued)

Entries in this table provide the area under the curve to the left of z. For example, $P(Z \le 1.52) = 0.9357$.

									0	<u>z</u>
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1)	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999