代號:32780 頁次:2-1

110年公務人員高等考試三級考試試題

類 科:統計 科 目:統計學 考試時間:2小時

座號:

※注意:(一)可以使用電子計算器。

(二)不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

(三本科目除專門名詞或數理公式外,應使用本國文字作答。

參考值:

 $z_{0.025}=1.96$, $z_{0.05}=1.645$, $z_{0.1}=1.28$,

 $t_{0.025,\,8}$ =2.306 , $t_{0.025,\,9}$ =2.262 , $t_{0.025,\,10}$ =2.228 , $t_{0.05,\,8}$ =1.860 , $t_{0.05,\,9}$ =1.833 , $t_{0.05,\,10}$ =1.812 $F_{0.025,\,2,\,8}$ =6.059 , $F_{0.025,\,4,\,8}$ =6.053 , $F_{0.05,\,2,\,8}$ =4.459 , $F_{0.05,\,4,\,8}$ =3.838

- 一、令 X_1 與 X_2 為具獨立同分布、期望值 $1/\lambda$ 的指數 (exponential) 隨機變數。令 $Y_1 = X_1 X_2$ 以及 $Y_2 = X_2$ 。(每小題 10 分,共 20 分)
 - (一)試求Y₁與Y₂之聯合機率密度函數。
 - (二)試求Y₁之邊際機率密度函數。
- 二、令 $X_1, X_2, ..., X_n$ 為一組隨機抽自常態分配 $N(0, \sigma^2)$ 之樣本。假設 $\sigma_1^2 > \sigma_0^2$,在顯著水準 0.05 下:
 - (-)試求檢定 $H_0:\sigma^2=\sigma_0^2$ vs. $H_1:\sigma^2=\sigma_1^2$ 的最強力檢定(most powerful test)。(10 分)
 - 二試求檢定 $H_0: \sigma^2 = \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$ 的齊一最強力檢定 (uniformly most powerful test)。(5分)
- 三、以下是(X,Y)兩變數之觀測資料:

X 11 9 14 10 12 15 5 13 6 6.77 12.74 7.11 6.42 Y 7.46 7.81 8.84 6.08 5.39 8.15 5.73 以下考慮皮爾森相關係數 (Pearson's correlation coefficient r) 與皮爾曼 等級相關係數 (Spearman's rank correlation coefficient r_s)。

- (-)試畫出(X,Y)之散布圖,並試計算r與 r_s 。(10分)
- (二)試刪去本數據中之離群子後,重新計算r與 r_s 。(5分)
- Ξ 試問 r 與 r_s 何者容易受離群子影響? (5分)

四、甲公司之零件製造部門有三台機器,輪流由五名員工(ABCDE)負責操作。李主任擬研究不同機器以及不同員工之生產量是否不同。以下是隨機抽取之生產量資料:

	機器一	機器二	機器三
員工 A	31	25	35
員工 B	33	26	33
員工 C	28	24	30
員工 D	30	29	28
員工 E	28	26	27

- (一)試寫出 ANOVA 表 (Analysis of Variance Table)。(5分)
- (二)在顯著水準 0.05 下,試檢定不同機器之生產量是否不同。(5分)
- (三)在顯著水準 0.05 下,試檢定不同員工之生產量是否不同。(5分)(四)試寫出模型假設。(5分)

五、乙公司從2018年第一季至2020年第四季之銷售量如下表所示:

	第一季	第二季	第三季	第四季
2018	1,600	2,500	2,800	2,970
2019	2,100	3,100	3,650	3,350
2020	2,250	3,250	3,840	3,860

假設該公司近年第一至四季的季節指數分別為 74.720、103.978、123.761、97.540。

- (一)試計算去除季節因子之銷售量。(5分)
- 二考慮簡單線性模型 $y_t = \alpha + \beta t + e_t$, 試求出去除季節因子之銷售量的趨勢估計式, 並在 0.05 顯著水準下檢定斜率是否為零。 $(10 \, \beta)$
- (三)試預測 2021 年第一至四季之銷售量。(5分)