代號:00110 頁次:2-1 109年專門職業及技術人員高等考試建築師、32類科技師 (含第二次食品技師)、大地工程技師考試分階段考試 (第二階段考試)暨普通考試不動產經紀人、記帳士考試、 109年第二次專門職業及技術人員特種考試驗光人員考試試題

等 别:高等考試

類 科:土木工程技師

科 目:結構設計(包括鋼筋混凝土設計與鋼結構設計)

※注意:(一)可以使用電子計算器。

二不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

(三本科目除專門名詞或數理公式外,應使用本國文字作答。

一、簡支矩形梁,跨度 $10\,\mathrm{m}$,其斷面寬為 $b=30\,\mathrm{cm}$,深度 $h=55\,\mathrm{cm}$,拉力側 鋼筋為 $5\,\mathrm{R}\,D25$ ($A_s=25.34\,\mathrm{cm}^2$, $f_y=4,200\,\mathrm{kgf/cm}^2$,有效深度 $d=45\,\mathrm{cm}$),忽略壓力側鋼筋,混凝土強度 $f_c'=280\,\mathrm{kgf/cm}^2$,此梁承受 含自重之均佈靜載重 $w_D=1.2\,\mathrm{tf/m}$ 與在梁中央之集中活載重 $P_L=4.8\,\mathrm{tf}$ 。 若此梁是位於一般樓層,且該梁上下方無隔間牆或天花板,試檢核該梁 是否可符合結構混凝土設計規範對撓度之控制(可參考規範表 $2.11.2\,\mathrm{c}$ 規定)?($25\,\mathrm{分}$)

參考公式:

$$I_e = (\frac{M_{cr}}{M_a})^3 I_g + [1 - (\frac{M_{cr}}{M_a})^3] I_{cr} \le I_g \quad f_r = 2.0 \sqrt{f_c'} \quad E_c = 15,000 \sqrt{f_c'}$$

表2.11.2 容許計算撓度

構材形式	考慮之撓度	撓度值限制
平屋頂,不支承或不連繫於因其較	因活載重所產生之即時撓度。	$\ell/180^*$
大撓度而易遭破壞之非結構體者。	口化蚁至川座工气外机场	.0,100
樓版,不支承或不連繫於因其較大	因活載重所產生之即時撓度。	ℓ/360
撓度而易遭破壞之非結構體者。	口化载主州在工气气机规文	0/ 2 0 0
屋頂或樓版,支承或連繫於因其較	與因其較大撓度而易遭破壞之非	$\ell/480^{++}$
大撓度而易遭破壞之非結構體者。	結構體連繫後所增之撓度(持續	·0/ / 00
屋頂或樓版,支承或連繫於不因其較	載重之長時撓度與任何增加活載	ℓ/240 ^{&}
大撓度而易遭破壞之非結構體者。	重之即時撓度之和+)。	70, 210

二、臺灣位處地震帶,建築物結構設計時皆需考量耐震設計,一般 RC 建築物先經基本結構設計後,梁柱仍需再符合結構混凝土設計規範「第十五章 耐震設計之特別規定」之耐震細部設計要求。

有一矩形截面柱,若地震引致之柱剪力超過設計剪力之半且此柱設計軸力小於 $0.05A_{g}f_{c}'$,依規範耐震細部設計要求,配置柱全長所需箍筋及繫筋間距值,請說明柱頭圍東區及柱中央非圍東區之設計,所需箍筋及繫筋有何特別要求?並比較柱頭圍東區及柱中央非圍東區所需箍筋及繫筋間距值計算時,依規範要求考量上之相同及不同處為何?(說明即可!不必計算!)(25分)

參考公式:

$$A_{sh} = 0.3 \, s \, b_c \, \frac{f_c'}{f_{yt}} (\frac{A_g}{A_{ch}} - 1) \quad A_{sh} = 0.09 \, s \, b_c \, \frac{f_c'}{f_{yt}} \quad s_0 = 10 + (\frac{35 - h_x}{3})$$

三、有一長度 2438.4 mm ASTM A36 材質(降伏強度與拉力強度之標稱值分別為 248 MPa 與 400 MPa)鋼構件兩端為鉸接,其斷面由 1 對 L-127x76.2x6.35 (mm) 角鋼銲接所組成;此 2 個角鋼長邊背對 $(K_i = 0.5)$ 相距 19 mm,並在構件軸向等距加 2 個銲接(接合距離 a = 2438.4/3 = 812.8 mm)連結。上述單一角鋼最小 $r_i = 16.6$ mm,而組合斷面兩軸 $r_x = 41$ mm與 $r_y = 33.8$ mm。經分析得知,該組合斷面受壓發生撓曲—扭轉挫屈之應力強度為 185 MPa,而考慮細長肢影響修正後之有效斷面 (A_e) 為 2361 mm²。試分析決定該構材有效長細比(KL/r),並依照載重強度係數設計法(LRFD)計算其受壓強度。(30 分) 參考公式:

$$\frac{a}{r_{i}} \le 40, \left(\frac{KL}{r}\right)_{m} = \left(\frac{KL}{r}\right)_{o}; \frac{a}{r_{i}} > 40, \left(\frac{KL}{r}\right)_{m} = \sqrt{\left(\frac{KL}{r}\right)_{o}^{2} + \left(\frac{K_{i}a}{r_{i}}\right)^{2}};$$

$$\frac{F_{y}}{F_{e}} \le 2.25, F_{cr} = \left[0.658^{\frac{F_{y}}{F_{e}}}\right] F_{y}; \frac{F_{y}}{F_{e}} > 2.25, F_{cr} = 0.877 F_{e}; \phi P_{n} = \phi F_{cr} A_{e}, \phi = 0.9$$

四、試分析比較 A992 鋼材與 A572 Grade 50 鋼材之特性差異。(20分)